• 15 hours
  • Medium

Free online content available in this course.

Videos available in this course

Certificate of achievement available at the end this course

Got it!

Last updated on 2/1/19

Log in or subscribe for free to enjoy all this course has to offer!

Course introduction

Après avoir étudié les méthodes supervisées linéaires et non-linéaire les plus utilisés dans les cours précédent, il est temps d'aborder la famille des méthodes ensemblistes.

Êtes-vous prêt·e à décupler la puissance de vos modèles grâce aux méthodes ensemblistes ? C'est ce que nous allons voir dans ce cours, en nous intéressant à une famille d'algorithme parmi les plus performantes actuellement.

En effet, en utilisant de manière rusée notre jeu de données, nous pouvons exploiter tout son potentiel, en créant un grand nombre de petit modèles rapidement puis en développant un méta-modèle qui les rassemble.

Suivez ce cours pour apprendre les deux familles de modèles les plus utilisées par les data scientists : les méthodes parallèles avec les forêts aléatoires et les méthodes séquentielles dont le modèle phare est le gradient boosting

Example of certificate of achievement
Example of certificate of achievement